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Abstract
Integral formulae for polynomial solutions of the quantum Knizhnik–
Zamolodchikov equations associated with the R-matrix of the six-vertex model
are considered. It is proved that when the deformation parameter q is equal to
e±2π i/3 and the number of vertical lines of the lattice is odd, the solution under
consideration is an eigenvector of the inhomogeneous transfer matrix of the
six-vertex model. In the homogeneous limit, it is a ground-state eigenvector of
the antiferromagnetic XXZ spin chain with the anisotropy parameter � equal
to −1/2 and an odd number of sites. The obtained integral representations
for the components of this eigenvector allow us to prove some conjectures
on its properties formulated earlier. A new statement relating the ground-
state components of XXZ spin chains and Temperley–Lieb loop models is
formulated and proved.

PACS numbers: 02.30.Ik, 75.10.Pq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The recent years have witnessed an explosion of conjectures concerning the ground state of
the antiferromagnetic XXZ spin chain with the anisotropy parameter � equal to −1/2 [1–4]
and of a closely related Temperley–Lieb loop model [3, 5–11]. They provide an interesting
connection to the world of combinatorics, and in particular to the realm of alternating sign
matrices [12]. Some progress has been made towards understanding these conjectures by use of
the connection of these one-dimensional quantum–mechanical models with two-dimensional
integrable models of statistical mechanics, the six-vertex model and the dense O(1) loop model,
respectively. Here, instead of eigenvectors of the Hamiltonians, one studies eigenvectors of the
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Figure 1. The Boltzmann weights for the six-vertex model.

transfer matrices. An important point of this approach, initiated by Di Francesco and Zinn-
Justin in paper [13], is the transition to inhomogeneous versions of the associated models
of statistical mechanics. It eventually led to the idea that one should replace the original
eigenvector equation defining the ground state with the quantum Knizhnik–Zamolodchikov
(qKZ) equation [14]. The qKZ equation contains a free parameter q that is related to the
anisotropy parameter � of the XXZ spin chain by � = (q + q−1)/2, so that one should set
q = e±2π i/3 in the end.

Much is known about solutions of the qKZ equation. As in the closely related work
[26], we shall here write integral formulae for its solutions. The focus of the present paper
being mostly on the periodic XXZ spin chain in odd size N = 2n + 1, the application will be
some formulae expressing its ground state entries explicitly as coefficients of a multi-variable
polynomial. This will allow us to settle some conjectures, including the calculation of the
most antiferromagnetic component of the ground state.

The plan of the paper is as follows. In section 2, we introduce the various models
involved. In section 3, we formulate in the form of theorems the statements to be proved in what
follows. In section 4, we discuss a certain relevant polynomial solution of the qKZ equation.
Finally, in section 5, we take the homogeneous limit, prove the statements on the properties
of the ground-state components of XXZ spin chains at � = −1/2 and Temperley–Lieb loop
models formulated in section 4 and comment on the implication for refined enumeration of
alternating sign matrices (ASMs) and totally symmetric self-complementary plane partitions
(TSSCPPs).

2. Six-vertex model and XXZ spin chain

2.1. Six-vertex model

The six-vertex model is a statistical mechanics vertex model defined on a square lattice with
N vertical and M horizontal rows. A state of the model is specified by a choice of the
direction of each edge usually denoted by an arrow. The arrows obey the rule, called the
ice condition, that at every vertex there are two arrows pointing in and two arrows pointing
out. There are six possible configurations of arrows at each vertex, hence the name of the
model. The Boltzmann weight of a vertex depends on its configuration and the value of the
spectral parameter x associated with the vertex as is given in figure 1, where the functions
a(x), b(x), c(x) and c′(x) are defined by the equalities3

a(x) = qx − q−1

q − q−1x
, b(x) = x − 1

q − q−1x
,

c(x) = (q − q−1)x

q − q−1x
, c′(x) = q − q−1

q − q−1x
.

3 Note that we use the so-called homogeneous gradation.
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The parameter q �= ±1 is a common parameter for all vertices. Often the parameter

� = a2(x) + b2(x) − c(x)c′(x)

2a(x)b(x)
= 1

2
(q + q−1)

is used instead. In the homogeneous case the same spectral parameter x is associated with
all vertices, while in the inhomogeneous case one associates variables y1, . . . , yM with the
horizontal rows of the lattice and variables z1, . . . , zN with the vertical rows. A vertex at the
intersection of horizontal row p and vertical row i acquires the spectral parameter equal to
yp/zi .

Instead of orientation, one can characterize the state of an edge by up or down arrows.
Here we supply an edge with an up arrow if the edge orientation arrow points up or to the
left and we supply it with a down arrow if the edge orientation arrow points down or to the
right. It is convenient to assume that the states which do not satisfy the ice condition are also
allowed but have the weight equal to zero and arrange the weights into a 4 × 4 matrix R(x)

whose rows are labeled by two indices, say α and µ, taking the values ↑ and ↓, and whose
columns are labeled by two indices, say β and ν, also taking the values ↑ and ↓. Assume that
the correspondence of indices and edges is as follows:

.

Choosing for pairs of indices the ordering ↑↑,↑↓,↓↑,↓↓, we have

R(x) =




a(x)

b(x) c(x)

c′(x) b(x)

a(x)


 ,

where only nonzero entries are presented.
We identify R(x) with the linear operator R1,2(x) in the vector space C

2 ⊗ C
2 defined via

the equality

R1,2(x)eν1 ⊗ eν2 = eµ1 ⊗ eµ2R
µ1µ2

ν1ν2(x),

where eµ, µ =↑,↓, are the elements of the standard basis of C
2:

e↑ =
(

1

0

)
, e↓ =

(
0

1

)
.

In general, let A = {α1, . . . , αI } be some ordered set of indices, and Vα for each α ∈ A be
a copy of the space C

2. We denote by Rα,β(x) the linear operator in Vα1 ⊗ · · · ⊗ VαI
acting

as R(x) in Vα and Vβ and identically in all other factors. In this situation, we also denote by
Pα,β the transposition

Pα,β

(
vα1 ⊗ · · · ⊗ vα ⊗ · · · ⊗ vβ ⊗ · · · ⊗ vαI

) = vα1 ⊗ · · · ⊗ vβ ⊗ · · · ⊗ vα ⊗ · · · ⊗ vαI
.

It can be shown that in the space V1 ⊗ V2 ⊗ V3 one has the Yang–Baxter equation

R1,2(x1/x2)R1,3(x1/x3)R2,3(x2/x3) = R2,3(x2/x3)R1,3(x1/x3)R1,2(x1/x2). (1)

The basic object of the statistical mechanics is the partition function of the system. One
of the ways to find it for a vertex model is to introduce the transfer matrices. The transfer
matrix, associated with horizontal rows of the lattice, is defined as

T (y|z1, . . . , zN) = tr0[R0,1(y/z1) · · · R0,N (y/zN)],
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where for each i = 1, . . . , N the operator R0,i (y/zi) is an operator in V0 ⊗ V1 ⊗ · · · ⊗ VN

and tr0 means the partial trace over V0. Here we assume that toroidal boundary conditions are
imposed. Using the Yang–Baxter equation (1), one can show that

[T (y|z1, . . . , zN), T (y ′|z1, . . . , zN)] = 0

for any y and y ′. Therefore, for fixed z1, . . . , zN one can bring the transfer matrices
T (y|z1, . . . , zN) to upper triangular form simultaneously for all values of y. Here the diagonal
matrix elements of the resulting matrices are eigenvalues.

The partition function is related to the transfer matrix as follows:

Z(y1, . . . , yM |z1, . . . , zN) = tr[T (y1|z1, . . . , zN) · · · T (yM |z1, . . . , zN)].

Bringing all the matrices under the trace to upper triangular form, one reduces the calculation
of the partition sum to the calculation of the eigenvalues of the transfer matrix. Note that in
the thermodynamic limit only the largest eigenvalues of the transfer matrix contribute to the
partition function.

There are two main methods to find eigenvalues and eigenvectors of the transfer matrix.
The first one is the Bethe ansatz, which is not discussed here, and the second is the method
of the Baxter functional relations. In accordance with the latter method, any eigenvalue
λ(y|z1, . . . , zN) of the transfer matrix T (y|z1, . . . , zN) satisfies the relation

λ(y|z1, . . . , zN)ρ(y|z1, . . . , zN) =
[

N∏
i=1

a(y/zi)

]
ρ(q−2y|z1, . . . , zN)

+

[
N∏

i=1

b(y/zi)

]
ρ(q2y|z1, . . . , zN), (2)

where ρ(y|z1, . . . , zN) is some function which is actually an eigenvalue of the so-called Baxter
Q-operator Q(y|z1, . . . , zN).

In the present paper, we discuss a special case where one can find an explicit solution of
equation (2). Namely, we consider the case where q = e±2π i/3. As was argued by Baxter4

[15] in this case equation (2) has a solution for

λ(y|z1, . . . , zN) =
N∏

i=1

[a(y/zi) + b(y/zi)]. (3)

As became clear afterwards, the corresponding eigenvector of the transfer matrix is nontrivial
only if N is odd. The explicit form of the function ρ(y|z1, . . . , zN) was found by Alcaraz
and Stroganov [19] and earlier by Stroganov [1] for the homogeneous case. Note that with
the parameterization of the weights used in the present paper a(x) + b(x) = 1 if q = e±2π i/3.
Hence, if the vector corresponding to the special eigenvalue of the transfer matrix given by
equation (3) is nontrivial it is an eigenvector with the eigenvalue 1. In the present paper,
we suggest and prove some integral representations for the components of the eigenvector
�(z1, . . . , zN) of the transfer matrix corresponding to the eigenvalue 1 for the case when
q = e±2π i/3 and N is odd.

4 Actually, Baxter considers the more general eight-vertex model, see in this respect, papers [16–18].
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2.2. XXZ spin chain

The six-vertex model is closely related to the XXZ model describing an interaction of the spin
one-half particles arranged in a chain. Here each particle interacts with its nearest neighbors
only. The Hamiltonian of the model has the form

HXXZ(�) = −1

2

N∑
i=1

[
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �σz
i σ z

i+1

]
, (4)

where � is the so-called anisotropy parameter and σx
i , σ

y

i , σ z
i are the operators describing spin

degrees of freedom of the particle at site i of the chain. We assume that periodic boundary
conditions are imposed.

In the homogeneous limit where all zi are equal to 1 for general q, the logarithmic
derivative of the transfer matrix of the six-vertex model T (x) = T (x|1, . . . , 1) at x = 1 is
related to the Hamiltonian HXXZ(�) as[

T −1(x)
dT (x)

dx

]
x=1

= − 1

q − q−1

[
HXXZ(�) − 3N

2
�

]
, (5)

where � = (q + q−1)/2. In the case when q = e±2π i/3, one has q + q−1 = −1 and � is equal
to −1/2. Therefore, in this case the homogeneous limit ψ of the eigenvector �(z1, . . . , zN)

of the transfer matrix with the eigenvalue 1 is an eigenvector of the Hamiltonian HXXZ(−1/2)

with the eigenvalue −3N/4.
It is well known that one can look for the eigenvectors of the transfer matrix of the six-

vertex model and the Hamiltonian of the XXZ spin chain in the sectors spanned by the basis
vectors with a fixed number of down or up arrows. For the case of K down arrows we denote
the corresponding basis vectors by ea1,...,aK

, where a1, . . . , aK are positions of down arrows. It
is natural to assume that 1 � a1 < · · · < aK � N . The discussed eigenvectors of the transfer
matrix and HXXZ(−1/2) belong to the sector with n down arrows if N = 2n + 1. Actually, it
has a companion with the same eigenvalue in the sector with n + 1 down arrows which can be
obtained by the transformation reversing direction of arrows. This transformation commutes
with the transfer matrix and HXXZ(�).

The eigenvector of the Hamiltonian HXXZ(−1/2) with the eigenvalue −3N/4 for an
odd number of sites was investigated numerically by Razumov and Stroganov [2]. They
formulated a few conjectures about the properties of the components of this vector. Some of
these conjectures have been proved already [20–23], and some of them have been generalized
to the case of different boundary conditions [3, 4]. In particular, it was shown that the
considered vector is the ground state of the Hamiltonian HXXZ(−1/2) [24, 25].

2.3. Temperley–Lieb loop model

Although this is not the main focus of this work, we shall briefly describe here a related model
of loops. This will allow us to derive interesting new connections between the discussed
models, and also to compare our results with those of paper [26].

We assume that the size of the system is even, equal to 2n. The state space of the model is
the free vector space generated by the set �2n formed by link patterns π , that is nonintersecting
planar pairings of 2n points regularly distributed on a circle. The dimension of this space is
equal to the Catalan number 1

n+1

(2n

n

)
. For example, in size 2n = 6, there are five link patterns

given in figure 2. It is sometimes convenient to identify a link pattern π with the involution
that exchanges paired points, so that such pairs are of the form (i, π(i)).

Define linear operators ei, i = 1, . . . , 2n, which act on link patterns according to the
following rule: either the points i and i + 1 (mod 2n) are already connected in the initial link
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Figure 2. The link patterns forming the canonical basis of the Temperley–Lieb loop model for
2n = 6.

pattern, in which case the link pattern is simply multiplied by τ = −q − q−1; or they are not,
in which case the lines arriving at points i, i + 1 are reconnected and a new arch pairs i and
i + 1 in the new link pattern. For example, we have

e1

1

2

3

4

5

6

=

1

2

3

4

5

6

.

One can easily show that the operators ei satisfy defining relations of the Temperley–Lieb
algebra [27].

Finally, the Hamiltonian is defined by HTL = ∑2n
i=1 ei . When q = e±2π i/3 one has τ = 1.

It is easy to check that in this case the dual of HTL has an eigenvector with all components
relative to the dual of the basis �2n equal to 1 and with eigenvalue 2n. Using the Perron–
Frobenius theorem, one can show that this is the largest eigenvalue. With an opposite sign
convention for HTL, this would be the ground-state eigenvalue. Normalize the corresponding
eigenvector

ξ =
∑

π∈�2n

πξπ

of HTL so that the smallest component, corresponding to the link patterns of the type of the
first three patterns in figure 2, is set to 1. In this case, the components ξπ possess remarkable
combinatorial properties, see in particular, paper [5].

An additional remark is in order: it is known that this model of loops can be mapped
into a twisted XXZ spin chain of the same even size. This is not the odd-sized XXZ model
that is considered in the present work. Nevertheless, we shall find below some non-trivial
connections between the odd-sized XXZ spin chain and the even-sized loop model.

3. Formulation of the main results

We now formulate in the form of theorems three properties of the ground-state components
of the models above that will be proved in section 5. The first two of them were conjectured
previously in paper [2], and the third one is new. Denote by ψ the ground-state eigenvector of
the XXZ spin chain of size 2n + 1 at � = −1/2, and by ξ the ground-state eigenvector of the
Temperley–Lieb loop model of size 2n at τ = 1. Recall that ψa1,...,an

is the component of ψ
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with down arrows at locations a1, . . . , an, and ξπ is the component of ξ corresponding to the
link pattern π .

3.1. Integerness

The first result reads as follows:

Theorem 1. If we choose the normalization of the vector ψ so that ψ1,2,...,n = 1 then all other
components ψa1,...,an

are integer.

This is one of the conjectures of paper [2]. In fact, it is not hard to check that the Perron–
Frobenius theorem can be applied here, see, for example [28, theorem 4], so that with this
normalization the components are also positive.

A similar conjecture exists for the Temperley–Lieb loop model, but will not be addressed
here.

3.2. Some partial sums and refined ASM enumeration

An alternating sign matrix (ASM) is a square matrix with entries in {−1, 0, +1} such that in
every row and column, the sequence of ±1 is alternatingly +1 and −1 starting and ending
with +1. Denote by A(n) the number of ASMs of size n, and by A(n, r) the number of ASMs
of size n whose (unique) +1 in the first row is at column r. These numbers have been at the
center of a great deal of activity, see the book [12]. As was conjectured by Mills, Robbins and
Rumsey [29, 30] and proved by Zeilberger [33, 34], they are given by the formulae

A(n) = 1!4!7! · · · (3n − 2)!

n!(n + 1)! · · · (2n − 1)!
,

A(n, r) = A(n)

(
n+r−2
n−1

)(2n−1−r

n−1

)
(3n−2

n−1

) .

Let us now return to the ground-state eigenvector ψ . In paper [35], Razumov and
Stroganov studied certain components ψa1,...,an

such that a1 = 1 or 2, . . . , a� = 2� − 1 or
2�, . . . , an = 2n−1 or 2n. They made the following observation based on numerical evidence:

∑
ε1,...,εn∈{0,1}

α
∑n

�=1 ε�ψ1+ε1,3+ε2,...,2n−1+εn
=

n+1∑
r=1

αr−1A(n + 1, r). (6)

Using the coordinate Bethe ansatz techniques, they managed to prove the following identity:

1

ψ1,3,...,2n−1

∑
ε1,...,εn∈{0,1}

α
∑n

�=1 ε�ψ1+ε1,3+ε2,...,2n−1+εn
= 1

A(n)

n+1∑
r=1

αr−1A(n + 1, r). (7)

We shall use this identity below. For now, what is important is that the proof of the original
observation (6) is reduced to the proof of the following result:

Theorem 2. If we choose the normalization of the vector ψ so that ψ1,2,...,n = 1 then
ψ1,3,...,2n−1 = A(n).

Note that, in view of the elementary relation A(n + 1, 1) = A(n), this is nothing but the
special case α = 0 of equation (6). In fact this was conjectured much earlier, in paper [2],
where it was also observed that ψ1,3,...,2n−1 is the largest component.
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3.3. From the XXZ spin chain ground state to the Temperley–Lieb loop model ground state

Let us now consider the components obtained from the component ψ1,3,...,2n−1 by increasing
one of the indices by 1. This is best explained by an example. In size N = 2n + 1 = 9, they
are the components

ψ2,3,5,7 = 17, ψ1,4,5,7 = 21, ψ1,3,6,7 = 25, ψ1,3,5,8 = 42.

The last component is nothing but the component ψ1,3,5,7 = A(4) = 42, which is obvious
because they are obtained from each other by rotation.

Now, amazingly the same quantities appear in the Temperley–Lieb loop model of size 2n,
that is equal to 8 in our example. Explicitly, group the link patterns π according to the point
π(1) to which 1 is paired. Consider the partial sums of components ξ(1,a) = ∑

π :π(1)=a ξπ .
For 2n = 8 we find

ξ(1,2) =

1

2 3

4

5

67

8

= 17, ξ(1,4) =

1

2 3

4

5

67

8

= 4,

ξ(1,6) =

1

2 3

4

5

67

8

= 4, ξ(1,8) =

1

2 3

4

5

67

8

= 17.

Calculating successive partial sums of the first 1, 2, 3 and 4 of the obtained numbers, we
reproduce exactly the components of ψ above. We are thus led to the following statement,
which is proved in what follows:

Theorem 3. There exist linear relations between the normalized ground state of the XXZ spin
chain in size 2n + 1 and the normalized ground state of the Temperley–Lieb loop model in size
2n of the form

ψ1,3,...,2k−3,2k,2k+1,...,2n−1 =
k∑

m=1

ξ(1,2m), k = 1, . . . , n.

Note that at k = n the above identity states that the component ψ1,3,...,2n−3,2n is equal to
the sum of all components of the loop model. We have already mentioned that the former is
conjectured to be A(n). That the latter is also equal to A(n) was conjectured by Batchelor, de
Gier and Nienhuis [3] and proved by Di Francesco and Zinn-Justin [13].
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4. Polynomial solutions of qKZ equation

4.1. Integral formulae

Being inspired by the integral formulae given, for example, in the book by Jimbo and Miwa
[36], let us consider the following integral:

�a1,...,an
(z1, . . . , zN)

=
∏

1�i<j�N

(qzi − q−1zj )

∮
· · ·

∮ n∏
�=1

dw�

2π i
�a1,...,an

(w1, . . . , wn | z1, . . . , zN),

(8)

where a1, . . . , an is a sequence of positive integers such that 1 � a1 < a2 < · · · < an � N =
2n + 1, and the function �a1,...,an

(w1, . . . , wn | z1, . . . , zN) has the form

�a1,...,an
(w1, . . . , wn | z1, . . . , zN)

= (q − q−1)n
n∏

�=1

za�

∏n
�=1 w�

∏
1��<m�n[(wm − w�)(qw� − q−1wm)]∏n

�=1

[∏
1�i�a�

(w� − zi)
∏

a��i�N(qw� − q−1zi)
] .

The variables w1, . . . , wn and z1, . . . , zN are complex, and the integration contours surround
the poles at w� = zi , but not at w� = q−2zi .

It is also necessary for our purposes to consider an alternative integral formula, which
involves n + 1 integrations:

�b1,...,bn+1(z1, . . . , zN)

=
∏

1�i<j�N

(qzi − q−1zj )

∮
· · ·

∮ n+1∏
�=1

dw�

2π i
�b1,...,bn+1(w1, . . . , wn+1|z1, . . . , zN),

(9)

where 1 � b1 < b2 · · · < bn+1 � N , the function �b1,...,bn+1(w1, . . . , wn+1 | z1, . . . , zN) has
the form

�b1,...,bn+1(w1, . . . , wn+1 | z1, . . . , zN)

= (q − q−1)n
N∏

i=1

zi

∏
1��<m�n+1[(wm − w�)(qw� − q−1wm)]∏n+1

�=1

[∏
1�i�b�

(w� − zi)
∏

b��i�N(qw� − q−1zi)
] ,

and the integration contours are the same. That equations (8) and (9) give the same set of
functions will be derived below, see proposition 2.

Using the reasonings similar to those of paper [26], one can show that �a1,...,an
(z1, . . . , zN)

and �b1,...,bn+1(z1, . . . , zN) are homogeneous polynomials in the variables z1, . . . , zN of degree
n(n + 1).

Let us define two vectors in the subspace of (C2)⊗N spanned by the basis vectors with n
down arrows,

�(z1, . . . , zN) =
∑

1�a1<···<an�N

�a1,...,an
(z1, . . . , zN)ea1,...,an

and

�(z1, . . . , zN) =
∑

1�b1<···<bn+1�N

�b1,...,bn+1(z1, . . . , zN)eb1,...,bn+1 ,

where eb1,...,bn+1 is a basis vector with up arrows in positions b1, . . . , bn+1.
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We will denote by a1, . . . , an and b1, . . . , bn+1 the increasing sequences of indices
complementing the sets a1, . . . , an and b1, . . . , bn+1 to the sequence 1, . . . , 2n + 1. Using
this notation, we can write, in particular,

ea1,...,an
= ea1,...,an

, eb1,...,bn+1
= eb1,...,bn+1 .

Proposition 1. For each i = 1, . . . , N − 1, the vector �(z1, . . . , zN) satisfies the equation

Ři,i+1(zi+1/zi)�(z1, . . . , zi, zi+1, . . . , zN) = �(z1, . . . , zi+1, zi, . . . , zN), (10)

where Ři,i+1(x) = Pi,i+1Ri,i+1(x). The vector �(z1, . . . , zN) satisfies the same equations.

Proof. First consider the vector �(z1, . . . , z2n+1). Let us rewrite explicitly equation (10) in
components. There are four cases, depending on the values of spins at locations i and i + 1. In
terms of the integers a1, . . . , an, it corresponds to the following: (i) i and i + 1 are not among
the integers a1, . . . , an; (ii) for some � < n one has a� = i and a�+1 �= i + 1; (iii) for some
l > 1 one has a� = i + 1 and a�−1 �= i; (iv) for some l < n one has a� = i and a�+1 = i + 1.

In cases (i) and (iv), equation (10) means that the component �a1,...,an
(z1, . . . , z2n+1)

divided by qzi − q−1zi+1 must be symmetric in the variables zi, zi+1. In case (i), the integrand
�a1,...,an

(w1, . . . , wn | z1, . . . , z2n+1) of equation (8) is symmetric in the exchange of zi and
zi+1. This implies that �a1,...,an

(z1, . . . , z2n+1) divided by qzi − q−1zi+1 is symmetric in
the variables zi, zi+1. In case (iv), �a1,...,an

(. . . , zi, zi+1, . . .) − �a1,...,an
(. . . , zi+1, zi, . . .) is

an antisymmetric function of w� and w�+1, and integration over these variables gives zero.
Therefore, �a1,...,an

(z1, . . . , z2n+1) divided by qzi − q−1zi+1 is symmetric in the exchange of
zi and zi+1.

In case (ii), we have the non-trivial equation

(q − q−1)zi+1�...,i,...({z}) + (zi+1 − zi)�...,i+1,...({z}) = (qzi − q−1zi+1)τi�...,i,...({z}), (11)

where we use the convenient notation τi for the exchange of variables zi and zi+1, and dots
stand for the unchanged indices. It is easy to see that in the case under consideration one has

�...,i+1,...({w}|{z}) = zi+1

zi

qw� − q−1zi

w� − zi+1
�...,i,...({w}|{z}),

τi�...,i,...({w}|{z}) = qzi+1 − q−1zi

qzi − q−1zi+1

zi+1

zi

w� − zi

w� − zi+1
�...,i,...({w}|{z}).

Using these relations one can prove that

(q − q−1)zi+1�...,i,...({w}|{z}) + (zi+1 − zi)�...,i+1,...({w}|{z})
= (qzi+1 − q−1zi)τi�...,i,...({w}|{z}).

Now the validity of equation (11) is evident.
A similar discussion can be made for case (iii) and for the vector �(z1, . . . , z2n+1). Let

us only mention that for the non-trivial case analogous to (iii) one should prove the relation

(q − q−1)zi+1�...,i+1,...({z}) + (zi+1 − zi)�...,i,...({z}) = (qzi − q−1zi+1)τi�...,i+1,...({z}), (12)

which actually follows from the equalities

�...,i+1,...({w}|{z}) = qw� − q−1zi

w� − zi+1
�...,i+1,...({w}|{z}),

τi�...,i+1,...({w}|{z}) = qzi+1 − q−1zi

qzi − q−1zi+1

qw� − q−1zi+1

w� − zi+1
�...,i,...({w}|{z}).

Thus, equation (10) is satisfied by both �(z1, . . . , zN) and �(z1, . . . , zN). �
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Proposition 2. The vectors �(z1, . . . , zN) and �(z1, . . . , zN) coincide.

Proof. It is clear from the definition of the vectors �(z1, . . . , zN) and �(z1, . . . , zN) that one
should prove the equality

�a1,...,an
(z1, . . . , zN) = �a1,...,an

(z1, . . . , zN). (13)

Let us prove this equality for the components �1,...,n(z1, . . . , zN) and �1,...,n(z1, . . . , zN) =
�n+1,...,N (z1, . . . , zN). Using equation (8), we see that the only poles that contribute to the
integral for �1,...,n(z1, . . . , zN) are the poles at the points wi = zi, i = 1, . . . , n, and we find
immediately

�1,...,n(z1, . . . , zN) =
n∏

i=1

zi

∏
1�i<j�n

(qzi − q−1zj )
∏

n+1�i<j�N

(qzi − q−1zj ). (14)

Consider now equation (9) for �n+1,...,N (z1, . . . , zN). We note that one can pick up poles
outside the contours instead of inside, and that there are none at infinity. Hence, the only
poles that contribute to the integral are the poles at the points wi = zn+i , i = 1, . . . , n + 1, and
the computation leads to the same expression (14). Thus, we see that �1,...,n(z1, . . . , zN) =
�n+1,...,N (z1, . . . , zN).

It is easy to see that any component of �(z1, . . . , zN) can be obtained from the component
�1,...,n(z1, . . . , zN) by incrementing indices with the help of the equality

�...,i+1,...({z}) = qzi − q−1zi+1

zi+1 − zi

τi�...,i,...({z}) − (q − q−1)
zi+1

zi+1 − zi

�...,i,...({z}),

which follows from equation (11). Similarly, any component of �(z1, . . . , zN) can be obtained
from the component �n+1,...,N (z1, . . . , zN) by decrementing indices with the help of the
equality

�...,i,...({z}) = qzi − q−1zi+1

zi+1 − zi

τi�...,i+1,...({z}) − (q − q−1)
zi+1

zi+1 − zi

�...,i+1,...({z}),

which follows from equation (12). Comparing now the two above equalities, we conclude that
equation (13) is valid for all components. �

Let σ be the operator of left rotation in the space (C2)⊗N defined by the equality

σ(v1 ⊗ v2 ⊗ · · · ⊗ vN) = v2 ⊗ · · · ⊗ vN ⊗ v1.

Proposition 3. The vector �(z1, . . . , zN) satisfies the following cyclicity condition

DNσ�(z1, . . . , zN) = �(z2, . . . , zN , sz1), (15)

where s = q6 and DN is the operator

D = q3nq3(σ z+1)/2

acting in the last factor of the tensor product (C2)⊗N .

Proof. First of all write equation (15) in terms of components. We have two cases in terms of
the components �a1,...,an

:

�a1,...,an−1,an
(z2, . . . , zN , sz1) =

{
q3n+3�1,a1+1,...,an−1+1(z1, z2, . . . , zN), an = N,

q3n�a1+1,...,an−1+1,an+1(z1, z2, . . . , zN), an < N,
(16)
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and two similar cases in terms of the components �b1,...,bn+1 :

�b1,...,bn,bn+1(z2, . . . , zN , sz1) =
{

q3n+3�b1+1,...,bn+1,bn+1+1(z1, z2, . . . , zN), bn+1 < N,

q3n�1,b1+1,...,bn+1(z1, z2, . . . , zN), bn+1 = N.

(17)

Taking into account the correspondence described by equation (13), it is easy to convince
oneself that the validity of the first case of equation (16) implies the validity of the second
case of equation (17), the validity of the second case of equation (16) implies the validity of
the first case of equation (17).

Let us start with the first case of equation (16). Picking up the poles in equation (8)
outside the contours, we see that there is a single pole that contributes to the integral for
�a1,...,an−1,N (z1, . . . , zN) over wn, namely, the pole at the point wn = q−2sz1 = q4z1. Using
this fact, we find that

�a1,...,an−1,N (z2, . . . , z2n+1, sz1) = q3n+3(q − q−1)n−1z1

n−1∏
�=1

za�+1

∏
2�i<j�N

(qzi − q−1zj )

×
∮

· · ·
∮ n−1∏

�=1

w� dw�

2π i

∏n−1
�=1(qz1 − q−1w�)

∏
1��<m�n−1[(wm − w�)(qw� − q−1wm)]∏n−1

�=1

[∏
1�i�a�

(w� − zi+1)
∏

a��i�2n(qw� − q−1zi+1)
] .

On the other hand, there is a single pole contributing to the integral for
�1,a1+1,...,an−1+1(z1, . . . , zN) over w1, namely, the pole at the point w1 = z1, and we obtain

�1,a1+1,...,an−1+1(z1, . . . , zN) = (q − q−1)n−1z1

n−1∏
�=1

za�+1

∏
2�i<j�N

(qzi − q−1zj )

×
∮

· · ·
∮ n∏

�=2

w� dw�

2π i

∏n
�=2(qz1 − q−1w�)

∏
2��<m�n[(wm − w�)(qw� − q−1wm)]∏n

�=2

[∏
2�i�a�−1+1(w� − zi)

∏
a�−1+1�i�2n+1(qw� − q−1zi)

] .

After the evident change of integration variables one sees that the first case of equation (16) is
true. In the same way one can show that the second case of equation (17) is also true. As is
noted above, it suffices to prove the validity of all cases of equations (16) and (17). �

Example. For n = 1, that is in size N = 3, from either expression (8) or (9) we obtain

�1(z1, z2, z3) = �2,3(z1, z2, z3) = z1(qz2 − q−1z3),

�2(z1, z2, z3) = �1,3(z1, z2, z3) = z2(q
−2z3 − q2z1),

�3(z1, z2, z3) = �1,2(z1, z2, z3) = z3(qz1 − q−1z2).

One can easily see that these expressions satisfy equations (16) and (17).

Equations (10) and (15) are the qKZ equations in the form proposed by Smirnov [37].

4.2. From qKZ to the six-vertex model and XXZ spin chain

Now along the lines of paper [38] we prove the following proposition.

Proposition 4. When q = e±2π i/3, the vector �(z1, . . . , zN) is an eigenvector of the transfer
matrix T (x|z1, . . . , zN) with the eigenvalue 1.
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Proof. Let us start with the vector �(zi, z1, . . . , zi−1, ẑi , zi+1, . . . , zN). Acting on
it successively by the operator Ř1,2(z1/zi), . . . , Ři−1,i (zi−1/zi) and having in mind
equation (10), we obtain

Ři−1,i (zi−1/zi) · · · Ř1,2(z1/zi)�(zi, z1, . . . , zi−1, ẑi , zi+1, . . . , zN)

= �(z1, z2, . . . , zi−1, zi, zi+1, . . . , zN). (18)

Now consider the vector DNσ�(zi, z1, . . . , zi−1, ẑi , zi+1, . . . , zN). It follows from
equation (15) that

DNσ�(zi, z1, . . . , zi−1, ẑi , zi+1, . . . , zN) = �(z1, . . . , zi−1, ẑi , zi+1, . . . , zN , szi).

The successive action of the operators ŘN−1,N (szi/zN), . . . , Ři,i+1(szi/zi+1) gives

Ři,i+1(szi/zi+1) · · · ŘN−1,N (szi/zN)DNσ�(zi, z1, . . . , zi−1, ẑi , zi+1, . . . , zN)

= �(z1, z2, . . . , zi−1, szi, zi+1, . . . , zN). (19)

Using the equality Ř(x)Ř(1/x) = 1, rewrite equation (18) as

�(zi, z1, . . . , zi−1, ẑi , zi+1, . . . , zN)

= Ř1,2(zi/z1) · · · Ři−1,i (zi/zi−1)�(z1, z2, . . . , zi−1, zi, zi+1, . . . , zN).

Substituting this equality into equation (19), we obtain

Si(z1, . . . , zN)�(z1, . . . , zN) = �(z1, . . . , szi, . . . zN), (20)

where Si(z1, . . . , zN) are the Yang scattering matrices,

Si(z1, . . . , zN) = Ři,i+1(szi/zi+1) · · · ŘN−1,N (szi/zN)DNσŘ1,2(zi/z1) · · · Ři−1,i (zi/zi−1).

One can show that when q = e±2π i/3 the Yang scattering matrices are related to the
transfer matrix by the equality Si(z1, . . . , zN) = T (zi |z1, . . . , zN). Therefore, in this case

T (zi |z1, . . . , zN)�(z1, . . . , zN) = �(z1, . . . , zN). (21)

Let us demonstrate now that when q = e±2π i/3 the vector �(z1, . . . , zN) is an
eigenvector of T (0|z1, . . . , zN) with the eigenvalue 1. To this end define the 2 × 2 matrices
Ri (x), i = 1, . . . , N , with the matrix elements being operators in the space (C2)⊗N as

Ri (x) =




a(x) + b(x)

2
+

a(x) − b(x)

2
σ z

i c(x)σ−
i

c′(x)σ +
i

a(x) + b(x)

2
− a(x) − b(x)

2
σ z

i


 .

One can easily show that

T (x|z1, . . . , zN) = tr[R1(x/z1) · · ·RN(x/zN)].

At x = 0 one obtains

Ri (0) = −q−2




1 + σ z
i

2
+ q

1 − σ z
i

2
0

−q(q − q−1)
1 − σ z

i

2
+ q

1 + σ z
i

2


 ,

therefore,

T (0|z1, . . . , zN) = (−q−2)N
(

1 + σ z
1

2
+ q

1 − σ z
1

2

)
· · ·

(
1 + σ z

N

2
+ q

1 − σ z
N

2

)

+ (−q−2)N
(

1 − σ z
1

2
+ q

1 + σ z
1

2

)
· · ·

(
1 − σ z

N

2
+ q

1 + σ z
N

2

)
.
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This equality implies that any vector belonging to the sector with K down arrows is an
eigenvector of T (0|z1, . . . , zN) with the eigenvalue

λ = λ(0|z1, . . . , zN) = (−1)Nq−2NqK + (−1)Nq−2NqN−K = (−1)N(q−2N+K + q−N−K).

One can convince oneself that in the case when N = 2n + 1,K = n and q = e±2π i/3 one has
λ = 1. Therefore, in this case

T (0|z1, . . . , zN)�(z1, . . . , zN) = �(z1, . . . , zN). (22)

From the definition of the transfer matrix T (x|z1, . . . , zN), it follows that the vector∏N
i=1

(
q − q−1xz−1

i

)
T (x|z1, . . . , zN)�(z1, . . . , zN) is a polynomial in x of degree N

with coefficients in (C2)⊗N . Equations (21) and (22) say that this vector coincide with∏N
i=1

(
q − q−1xz−1

i

)
�(z1, . . . , zN) for N + 1 values of x. Hence, it coincides with∏N

i=1

(
q − q−1xz−1

i

)
�(z1, . . . , zN) for any value of x. Thus, the vector �(z1, . . . , zN) is

an eigenvector of the transfer matrix T (x|z1, . . . , zN) with the eigenvalue 1. �

In the homogeneous limit for general q, the logarithmic derivative of the transfer matrix
T (x) = T (x|1, . . . , 1) at x = 1 is related to the Hamiltonian HXXZ(�) of the XXZ spin
model via equation (5). Therefore, in the case when q = e±2π i/3 the vector �(1, . . . , 1) is
an eigenvector of HXXZ(−1/2) with the eigenvalue −3N/4. There is in fact a more direct
derivation of the latter.

Indeed, starting from equation (21) for any distinct i and j , one writes

Si(z1, . . . , zN)S−1
j (z1, . . . , zN)�(z1, . . . , zN) = �(z1, . . . , zN). (23)

Now for infinitesimal ε and ε′, let us set zi = 1 + ε, zj = 1 + ε′, zk = 1 for k �= i, j . From the
definition of Si(z1, . . . , zN) it follows that in this case for i < j one has

Si =
(

1 + ε

N−1∑
k=i

hk − ε′hj−1 + ε

i−1∑
k=1

σhkσ
−1 + · · ·

)
σ,

where hk = Ř′
k(1). Using the equality σŘi(x)σ−1 = Ři−1(x) and introducing the missing

operator ŘN(x) which acts on spaces 1 and N, such that ŘN(x) = σŘ1(x)σ−1, we come to
the equality

Si =


1 + ε

N∑
k=1

k �=i−1

hk − ε′hj−1 + · · ·


 σ.

In a similar way one obtains

Sj =


1 + ε′

N∑
k=1

k �=j−1

hk − εhi−1 + · · ·


 σ,

so that

SiS
−1
j = 1 + (ε − ε′)

N∑
k=1

hk + · · · .

In the case i > j we come to the same result.
Expanding equation (23) to first order in ε and ε′, we conclude that the vector �(1, . . . , 1)

is an eigenvector of
∑N

i=1 hi with the eigenvalue 0. One can show that
∑N

i=1 hi coincides with
the logarithmic derivative of the transfer matrix T (x) = T (x|1, . . . , 1) at x = 1, which, in
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turn, is related to the Hamiltonian HXXZ(�) of the XXZ spin chain via equation (5). Thus, we
again see that the vector �(1, . . . , 1) is an eigenvector of the Hamiltonian HXXZ(−1/2) with
the eigenvalue −3N/4.

Concluding this section, note that using the identity

σ = PN−1,N . . . P2,3P1,2

one can rewrite the definition of the Yang scattering matrices as

Si(z1, . . . , zN) = R−1
i,i+1(s

−1zi+1/zi) · · · R−1
i,N (s−1zN/zi)DiR1,i (zi/z1) · · · Ri−1,i (zi/zi−1).

Then, equation (20) takes the form

�(z1, . . . , szi, . . . zN) = R−1
i,i+1(s

−1zi+1/zi) · · · R−1
i,N (s−1zN/zi)

×DiR1,i (zi/z1) · · · Ri−1,i (zi/zi−1)�(z1, . . . , zi, . . . zN).

It is this equation that is now usually called the qKZ equation, see, for example, paper [39].

5. Homogeneous limit and applications

We will now find the homogeneous limit of the representations (8) and (9) for the components
of the vector �(z1, . . . , zN). In this limit, �(z1, . . . , zN) depends on the single remaining
parameter q, and when q = e±2π i/3 it coincides with the ground state of the Hamiltonian
HXXZ(−1/2). Thus, the homogeneous limit of the representations (8) and (9) at q = e±2π i/3

give the components of the ground-state vector of the XXZ spin chain at � = −1/2.

5.1. Integral formulae in the homogeneous limit

It is convenient to define

ψ = (q − q−1)−n2
�(1, . . . , 1) =

∑
1�a1<···<an�N

ψa1,...,an
ea1,...,an

=
∑

1�b1<···<bn+1�N

ψb1,...,bn+1
eb1,...,bn+1 .

The normalization is chosen in such a way that ψ1,2,...,n = ψ1,2,...,n+1 = 1.
After the change of variables

u� = w� − 1

qw� − q−1
,

we obtain from equation (8)

ψa1,...,an
=

∮
· · ·

∮ n∏
�=1

du�

(
1 + τu� + u2

�

)
2π iua�

�

∏
1��<m�n

[(um − u�)(1 + τum + u�um)], (24)

where τ = −q − q−1. In a similar way, equation (9) yields

ψb1,...,bn+1
=

∮
· · ·

∮ n+1∏
�=1

du�

2π iub�

�

∏
1��<m�n+1

[(um − u�)(1 + τum + u�um)]. (25)

It is not difficult to show that we really have

ψ1,2,...,n = 1, ψ1,2,...,n+1 = 1.

Recall that the two types of components are related by

ψa1,...,an
= ψa1,...,an

. (26)
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After the change of the variables u� �→ 1/u� one finds the following reflection symmetry:

ψa1,...,an
= ψN+1−an,...,N+1−a1 , ψb1,...,bn+1

= ψN+1−bn+1,...,N+1−b1
.

Example. Here are all the homogeneous components for n = 2:

ψ1,2 = ψ4,5 = 1, ψ1,5 = τ, ψ2,3 = ψ3,4 = τ 2,

ψ1,3 = ψ3,5 = 2τ, ψ2,4 = τ(1 + τ 2), ψ1,4 = ψ2,5 = 1 + τ 2.
(27)

The case q = e±2π i/3, when the vector ψ becomes the ground state of the XXZ spin chain,
corresponds to τ = 1. In this case, all components on either line of equation (27) become
equal. This is a sign of the rotational invariance

σψ = ψ

which is a direct consequence of equation (15).

Note that equations (24) and (25) express components of ψ as particular coefficients of
a polynomial in the variables u� and τ with integer coefficients. An important consequence
is that the components of ψ are polynomials in τ with integer coefficients. In particular, at
τ = 1, the components of the ground state of the XXZ spin chain are integers. Thus, theorem 1
is proved. Recall that the normalization of ψ is fixed by ψ1,...,n = 1, so that this component is
necessarily the smallest one.

5.2. Recurrence relation

When a1 = 1 or b1 = 1 it is easy to integrate over u1 in equation (24) or (25), one just needs
to set u1 = 0. For example, equation (24) gives

ψ1,a2,...,an
=

∮
· · ·

∮ n∏
�=2

du�

(
1 + u� + u2

�

)
(1 + τu�)

2π iua�−1
�

∏
2��<m�n

[(um − u�)(1 + τum + u�um)].

That implies a recurrence relation

ψ
(n)
1,a2,...,an

=
∑

ε2,...,εn∈{0,1}
τ

∑n
�=2 ε�ψ

(n−1)
a2−1−ε2,...,an−1−εn

, (28)

where for clarity we use additional indices to stress that the components in the left- and right-
hand sides correspond to different values of n. The obtained recurrence relation is not a closed
recurrence because some indices may become equal in the right-hand side of the formula. A
similar relation is satisfied by the components ψb1,...,bn+1

.
We now assume that q = e±2π i/3, that is τ = 1. Using the rotational invariance of ψ , one

can rewrite equation (28) in the form

ψ(n)
a1,a2,...,an

=
∑

ε2,...,εn∈{0,1}
ψ

(n−1)
a2−a1−ε2,...,an−a1−εn

. (29)

5.3. Proof of second theorem

Applying equation (29) to the component ψ
(n)
1,3,...,2n−1, after the change ε� �→ 1 − ε�−1 one

obtains

ψ
(n)
1,3,...,2n−1 =

∑
ε1,...,εn−1∈{0,1}

ψ
(n−1)
1+ε1,...,2n−3+εn−1

. (30)
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We then use equation (7), which we rewrite at n − 1:

1

ψ
(n−1)
1,3,...,2n−3

∑
ε1,...,εn−1∈{0,1}

α
∑n−1

�=1 ε�ψ
(n−1)
1+ε1,3+ε2,...,2n−3+εn−1

= 1

A(n − 1)

n∑
r=1

αr−1A(n, r). (31)

Recall that A(n, r) are the numbers providing the refined enumeration of the alternating sign
matrices. At α = 1, taking into account that

∑n
r=1 A(n, r) = A(n) we have∑

ε1,...,εn−1∈{0,1}
ψ

(n−1)
1+ε1,3+ε2,...,2n−3+εn−1

= A(n)

A(n − 1)
ψ

(n−1)
1,3,...,2n−3.

Comparing this equality with equation (30), we conclude that

ψ
(n)
1,3,...,2n−1 = A(n)

A(n − 1)
ψ

(n−1)
1,3,...,2n−3.

Now taking into account that ψ
(1)
1 = 1 = A(1), we come to the equality

ψ
(n)
1,3,...,2n−1 = A(n)

which is the statement of theorem 2.
One can now simplify the equality (31) to

∑
ε1,...,εn−1∈{0,1}

α
∑n−1

�=1 ε�ψ
(n−1)
1+ε1,3+ε2,...,2n−3+εn−1

=
n∑

r=1

αr−1A(n, r), (32)

which was the main observation of paper [35]. This results in the following integral
representation for the generating function of the refined enumeration of the alternating sign
matrices:

n∑
r=1

αr−1A(n, r) =
∮

· · ·
∮ n−1∏

�=1

du�

(
1 + u� + u2

�

)
(1 + αu�)

2π iu2�
�

×
∏

1��<m�n−1

[(um − u�)(1 + um + u�um)].

Using the connection between components ψ(n)
a1,...,an

and ψ
(n)

b1,...,bn+1
, and the integral

representation (25), one can also prove the validity of the equality
n∑

r=1

αrA(n, r) =
∮

· · ·
∮ n∏

�=1

du�(1 + αu�)

2π iu2�
�

∏
1��<m�n

[(um − u�)(1 + um + u�um)].

5.4. Relation to Temperley–Lieb loop model

In paper [26], in the study of qKZ solutions in the loop basis, certain integrals similar to those
given by equations (8) and (9) were introduced. They depend on a sequence of integers, which
we shall name here b1, . . . , bn for consistency with our present notations, and are of the form

�b1,...,bn
(z1, . . . , z2n) =

∏
1�i<j�2n

(qzi − q−1zj )

×
∮

· · ·
∮ n∏

�=1

dw�

2π i

∏
1��<m�n[(wm − w�)(qw� − q−1wm)]∏n

�=1

[∏
1�i�b�

(w� − zi)
∏

b�<i�2n(qw� − q−1zi)
] .

Note that these do not exactly coincide with either of equations (8) and (9), however, quite
remarkably, and as can be easily checked by direct comparison, in the homogeneous limit,



11844 A V Razumov et al

after proper normalization, they are exactly equal to ψ
(n−1)

b1,...,bn
, where once again the size of the

system is written explicitly in superscript.
Let us now borrow without proof the following result from paper [26], see in particular

its appendix A. In general, it expresses the aforementioned integrals as linear combinations of
components of the solution of the qKZ equation in the loop basis. These are relations of the
form

�b1,...,bn
(z1, . . . , z2n) =

∑
π∈�2n

Cπ
b1,...,bn

�π(z1, . . . , z2n). (33)

The coefficients are given explicitly by the relation

Cπ
b1,...,bn

=
∏

i<π(i)

U#{�:i�b�<π(i)}−(π(i)−i+1)/2, (34)

where i and π(i) are connected by an arch, and the numbers Uk are defined by the relation

Uk−1 = qk − q−k

q − q−1
.

For example, one has U−1 = 0, U0 = 1, U1 = −τ, U2 = τ 2 − 1, etc. What is relevant here is
the homogeneous limit and the value q = e±2π i/3. In this case equation (33) becomes

ψ̄
(n−1)
b1,...,bn

=
∑

π∈�2n

Cπ
b1,...,bn

ξπ , (35)

thus relating eigenvectors of XXZ model in size 2n−1 and of the Temperley–Lieb loop model
of section 2.3 in size 2n.

In paper [35], special sequences of the form a1 = 1 or 2, . . . , a� = 2� − 1 or
2�, . . . , an = 2n − 1 or 2n were investigated, see section 3.2. Interestingly, something
similar can be defined here. Consider sequences of the form b1 = 1 or 2, . . . , b� = 2� − 1
or 2�, . . . , bn−1 = 2n − 3 or 2n − 2, bn = 2n − 1. Note that bn = 2n is not allowed since
in this case ψb1,...,bn

would be zero. Applying equation (34), we find that the corresponding
coefficients Cπ

b1,...,bn
can only be zero or one, and that they are one if and only if the following

condition is met [26]:

2� < π(2�) iff b� = 2�, � = 1, . . . , n − 1, (36)

or, alternatively,

2� > π(2�) iff b� = 2� − 1, � = 1, . . . , n − 1. (37)

Let us call the opening (closing) of π an index i such that i < π(i) (π(i) < i), that is the
arch starting at i connects a vertex to the right (left) of i. Thus, these particular components
ψb1,...,bn

are partial sums of ξπ at fixed locations of even openings/closings. In particular, by
summing over all such sequences we obtain the full sum of loop components:∑

ε1,...,εn−1∈{0,1}
ψ

(n−1)

2−ε1,...,2n−2−εn,2n−1 =
∑

π∈�2n

ξπ .

The results of the previous section can now be reinterpreted in terms of the Temperley–
Lieb loop model. Starting once more from equation (32), we obtain

A(n, r) =
∑

ε1,...,εn−1∈{0,1}∑n−1
�=1 ε�=r−1

ψ
(n−1)
1+ε1,3+ε2,...,2n−3+εn−1

=
∑

ε1,...,εn−1∈{0,1}∑n−1
�=1 ε�=r−1

ψ
(n−1)

2−ε1,4−ε2,...,2n−2−εn−1,2n−1 =
∑

π :#{even openings of π}=r−1

ξπ (38)



Polynomial solutions of qKZ equation 11845

as conjectured in paper [26]. In the special case r = 1 or r = n, the sum in the last right-
hand side of equation (38) reduces to a single term, corresponding to one of the two largest
components, with link pattern of the type of fourth or fifth link pattern in figure 2, while the
left-hand side is simply A(n, 1) = A(n, n) = A(n − 1). We have thus proved by the same
token one of the conjectures of paper [3]. Note also that by summing equation (38) over r,
one obtains on the left-hand side the number A(n), and on the right-hand side the sum over
all components of the loop model, thus recovering the main result of paper [13].

We are now in a position to prove the third theorem of section 3.3. In all this section we
assume that τ = 1. Let us once again consider the component ψ1,3,...,2k−3,2k,2k+1,...,2n−1, with
one defect 2k in the sequence of odd indices, for the XXZ spin chain in size N = 2n+ 1. First,
we can use the rotational invariance to decrease all indices by 2k (modulo N) and rewrite it
as ψ1,3,...,2(n−k)−1,2(n−k+1),...,2n−2,2n+1, that is as a sequence of n − k odd indices, of k − 1 even
indices and 2n + 1 last. Then we can apply the recurrence relation (29):

ψ
(n)

1,3,...,2(n−k)−1,2(n−k+1),...,2n−2,2n+1

=
∑

ε2,...,εn∈{0,1}
ψ

(n−1)

2−ε2,...,2(n−k)−2−εn−k ,2(n−k)+1−εn−k+1,...,2n−3−εn−1,2n−εn
.

Note that only εn = 1 contributes to the sum, because the value 2n cannot appear in size 2n−1,
the corresponding integral being zero. At this stage, one can use the rotational invariance in
size 2n − 1 to shift the indices again, this time increasing them by 2k. The formula we get is

ψ
(n)
1,3,...,2k−3,2k,2k+1,...,2n−1 =

∑
ε2,...,εn−1∈{0,1}

ψ
(n−1)
2−εn−k+1,...,2k−2−εn−1,2k,2k+2−ε2,...,2n−2−εn−k

.

In order to identify the right-hand side in terms of loops, we must use the complementary set
of indices. We find, after re-indexation of the summation variables,

ψ
(n)
1,3,...,2k−3,2k,2k+1,...,2n−1 =

∑
ε1,...,εn−2∈{0,1}

ψ
(n−1)

2−ε1,...,2k−2−εk−1,2k−1,2k+2−εk,...,2n−2−εn−2,2n−1.

According to the correspondence described above, see equation (36), the right-hand side is
nothing but the sum of the components of the Temperley–Lieb loop model eigenvector for
which the corresponding link pattern has a closing at 2k. Hence, the final result is

ψ1,3,...,2k−3,2k,2k+1,...,2n−1 =
∑

π :π(2k)<2k

ξπ .

This is in fact the statement of theorem 3. Indeed, via the reflection that sends 2k to 1, a
closing arch at 2k becomes an arch starting at 1 and ending somewhere between 2 and 2k.

5.5. Application to the refined enumeration of ASMs and TSSCPPs

The main result of paper [26] is the expression of the sum of components of the loop model as
a refined enumeration of totally symmetric self-complementary plane partitions (TSSCPPs).
More precisely, it reads∑

π :#{even openings of π}=r

ξπ = #{TSSCPPs : #{i : ri �= i mod 2} = r},

where ri is the endpoint of the ith path in the non-intersecting lattice path formulation of
TSSCPPs (see paper [26] for details).

Here we have a similar expression involving a refined enumeration of ASMs, namely
equation (38). Combining the two we find

A(n, r) = #{TSSCPPs : #{i : ri �= i mod 2} = r − 1}.
This equality of refined enumerations of ASMs and TSSCPPs was conjectured in [31] (see
also [32]: this is the first type of refinement among the three presented).
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6. Conclusion

We believe that the main results of the present paper are the integral formulae (8) and (9). As
we proved at q = e±2π i/3 they give components of the ground state of the transfer matrix of
the inhomogeneous six-vertex model in the case of toroidal boundary for an odd number of
vertical rows of the lattice. The homogeneous limit (24) and (25) of formulae (8) and (9) gives
the components of the ground-state vector of the antiferromagnetic XXZ spin chain for the
anisotropy parameter � equal to −1/2. This fact has allowed us to prove some conjectures
for these components that were formulated earlier.

On the basis of the coincidence of expression (9) with the corresponding homogeneous
limit of the integrals considered in paper [26] in the context of Temperley–Lieb loop models,
we discovered a connection between the ground-state components of the odd-sized XXZ spin
chains and even-sized Temperley–Lieb loop models. We formulated a new statement relating
these components and proved it. We noted that combining the various proved properties of the
ground states of the XXZ spin chain and loop models lead to interesting results for enumerative
combinatorics, in particular a (rather indirect) proof of the equality of the refined enumeration
of ASMs and TSSCPPs.
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